

WITH ALL THE NUTRITIONAL SUPPORT YOU'VE COME TO EXPECT FROM NUTRISON

Food for special medical purposes. It must be used under medical supervision only. This information is intended for healthcare professional use only.

^{*}Core Range refers to Nutrison Energy Multi Fibre, Nutrison Energy, Nutrison Multi Fibre, Nutrison

The Nutrison range of enteral feeds: designed to break the cycle of disease related malnutrition

1. Van Den Berg C, et al. ESPEN Accepted Abstract, Clin. Nutr. 2024 - Gastrointestinal tolerance and compliance of reformulated tube feeds with a plant-dominant protein blend. 2. Hindran Z, et al. Clin Nutr. 2022; 41(6):1357-1424 - ESPEN micronutrient guidelines. 4. Wimalawansa SJ. Nutrients. 2023; 15(17):3842 - Data confirmed that keeping an individual's serum 25(OH)D concentrations above 50 ng/ml. (125 nmol/L) (and above 40 ng/ml. in the population) reduces risks from community outbreaks, sepsis, and autoimmune disorders. 5. Carr Ac, et al. Nutrients. 2017;9(ff):1211 - Vitamin C and Immune Function. 6. Mitra S, et al. Molecules. 2022; 27(2):555 - Exploring the Immune-Boosting Functions of Vitamins and Minerals as Nutritional Food Bioactive Compounds: A Comprehensive Review. 7. Rai S, et al. J Pure Appl Microbiol. 2021; 15(4):1735-1744 - The Potential Role of Vitamin B12 in the Prevention of COVID-19 Complications: A Narrative Review. 8. Stach K, et al. Nutrients. 2021; 13(9):3229 - Vitamin B-6 in Health and Disease. 9. Morris MS, et al. J Nutr. 2010; 140(1):103-10 - Vitamin B-6 in Intake is inversely related to, and the requirement is affected by, inflammation status.

CURRENT NUTRISON RANGE RECIPES ALREADY CONTAIN MF6 BLEND, CAROTENOIDS AND DHA/EPA.

Food for special medical purposes. Must be used under medical supervision. Information for healthcare professionals only.

1. Jakobsen LH, et al. Clin Nutr. 2017; 36(2):380-88. 2. Vaisman N, et al. Clin Nutr. 2016; 25(4):740-6
5. Hofman Z, et al. Clin Nutr. 2001; 20(3):63-4. 6. Wierdsma NJ, et al. Ned Tijdschr Voeding Diet. 2001; 56(11):243-7. 7. Silk DBA, et al. Clin Nutr. 2001; 20(1):49-58. 8. Trier E, et al. J Pediatr Gastroenterol Nutr. 1999; 27:595.
9. Green CJ. Clin Nutr. 2001; 20(1):23-39. 10. Guirmber D, et al. Br J Nutr. 2010; 104:1514-22. 11. Schneider SM, et al. Clin Nutr. 2006; 25:82-90. 12. Majid HA, et al. J Hum Nutr Diet. 2011; 24:260-268.
13. Torrejon C, et al. Prostaglandins, Leukot Essent Fatty Acids. 2007; 77:319-326

NEW RECIPES ARE ENHANCED WITH A HIGHER BLEND OF PLANT PROTEIN AND HIGHER MICRONUTRIENTS

Food for special medical purposes. Must be used under medical supervision. Information for healthcare professionals only.

1. Jakobsen LH, et al. Clin Nutr. 2017; 36(2):380-88. 2. Vaisman N, et al. Clin Nutr. 2006; 25(6):897-905. 3. Jakobsen LH, et al. Clin Nutr. 2017; 36(2):380-88. 4. Yagmurdur H, et al. Asia Pac J Clin Nutr. 2016; 25(4):740-6 5. Hofman Z, et al. Clin Nutr. 2001; 20(3):63-4. 6. Wierdsma NJ, et al. Ned Tijdschr Voeding Diet. 2001; 56(11):243-7. 7. Silk DBA, et al. Clin Nutr. 2001; 20(1):49-58. 8. Trier E, et al. J Pediatr Gastroenterol Nutr. 1999; 27:595. 9. Green CJ. Clin Nutr. 2001; 20(1):23-39. 10. Guimber D, et al. Br J Nutr. 2010; 104:1514-22. 11. Schneider SM, et al. Clin Nutr. 2006; 25:82-90. 12. Majid HA, et al. J Hum Nutr Diet. 2011; 24:260-268.

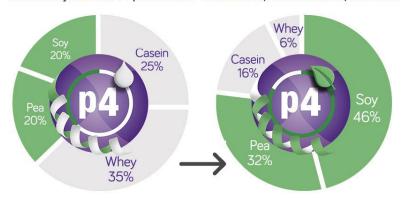
13. Torrejon C, et al. Prostaglandins, Leukot Essent Fatty Acids. 2007; 77:319-326 14. Van Den Berg C, et al. Clin Nutr ESPEN. 2024; 63:1310 15. Hofman Z, et al. Clin Nutr ESPEN. 2024; 63:1269-1270. 16. Berger MM, et al. Clin Nutr. 2022; 41(6):1357-1424. 17. Wirnalawansa SJ. Nutrients. 2023; 15(17):3842

18. Carr AC, et al. Nutrients, 2017:9(11):1211, 19. Mitra S, et al. Molecules, 2022: 27(2):555, 20. Rai S, et al. J Pure Appl Microbiol, 2021: 15(4):1735-1744, 21. Stach K, et al. Nutrients, 2021: 13(9):3229

22. Morris MS. et al. J Nutr. 2010: 140(1):103-10.

Defining the new standard for enteral nutrition

Building on the proven efficacy of Nutrison, the reformulated Core meets the Vitamin D level of the latest ESPEN micronutrient guideline while introducing a new distinctive protein blend variant. The new range shows good GI tolerance.¹



We have reformulated our P4 blend to contain more plant-based proteins

Comparing the current and updated P4 protein blends

Current dairy dominant P4 protein blend Reformulated plant dominant P4 protein blend

In line with the EAT Lancet
Planetary Health Diet, that
recommends a diet with higher
proportion of vegetables and
plant-based proteins, and smaller
quantities of meat and dairy
products¹⁻³

A non-coagulating protein blend that supports GI tolerance⁴⁻⁵

Food for special medical purposes. Must be used under medical supervision. Information for healthcare professionals only.

The first to provide levels of Vitamin D* in line with the most recent ESPEN micronutrient recommendations and new insights into its importance for immune function

Higher levels of Vitamin D:

To help prevent deficiencies of Vitamin D associated with impaired immune function^{1,2}

We've also added more Vitamin B1, B2, B6, B12 & C:

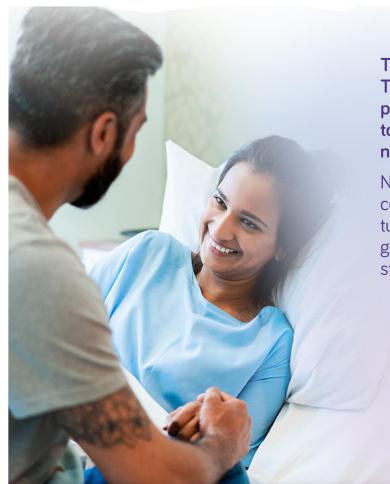
To help prevent B vitamins and Vitamin C deficiencies associated with increased oxidative stress and disturbed energy metabolism¹⁻¹⁷ Patients receiving enteral tube nutrition are frequently at risk of vitamin deficiencies during their illness - a time when requirements are often higher¹⁻¹⁷

This includes:

- Patients at risk of vitamin depletion
- Patients who might have higher needs

Food for special medical purposes. Must be used under medical supervision. Information for healthcare professionals only.

1.Berger MM, et al. Clin Nutr. 2022; 41(6):1357-1424 – ESPEN micronutrient guidelines. 2. Wimalawansa SJ. Nutrients. 2023; 15(17):3842 - Data confirmed that keeping an individual's serum 25(OH)D concentrations above 50 ng/mL (125 nmol/L) (and above 40 ng/mL in the population) reduces risks from community outbreaks, sepsis, and autoimmune disorders. 3. Carr AC, et al. Nutrients. 2017;9(11):1211 - Vitamin C and Immune Function


4. Calder PC, et al. Br J Nutr. 2009; 101 Suppl 1:S1-45 - Inflammatory Disease Processes and Interactions with Nutrition. 5. Sanchez-Moreno C, et al. Stroke. 2004; 35(1):163-8 Decreased Levels of Plasma Vitamin C and Increased Concentrations of Inflammatory and Oxidative Stress Markers After Stroke. 6. Abioye Ai, et al. BMJ Glob Health. 2021;6(1):e003176- Effect of micronutrient supplements on influenza and other respiratory tract infections among adults: a systematic review and meta-analysis. 7. Hemila, et al. Cochrane Database Syst Rev. 2013; 8(8):CD005532 - Vitamin C for preventing and treating pneumonia

8. Mitra S, et al. Molecules. 2022; 27(2):555 - Exploring the Immune-Boosting Functions of Vitamins and Minerals as Nutritional Food Bioactive Compounds: A Comprehensive Review. 9. Rai S, et al. J Pure Appl Microbiol. 2021; 15(4):1735-1744 - The Potential Role of Vitamin B12 in the Prevention of COVID-19 Complications: A Narrative Review. 10. Iddir M, et al. Nutrients. 2020; 12(6):1562 - Strengthening the Immune System and Reducing Inflammation and Oxidative Stress through Diet and Nutrition: Considerations during the COVID-19 Crisis. 11. Stach K, et al. Nutrients. 2021; 13(9):3229 - Vitamin B6 in Health and Disease. 11. Friso S, et al. Circulation. 2001; 103(23):2788-91 - Low circulating vitamin B(6) is associated with elevation of the inflammation marker C-reactive protein independently of plasma homocysteine levels. 12. Van De Lagemaat EE, et al. Nutrients. 2019; 11(2):482 - Vitamin B12 in Relation to Oxidative Stress: A Systematic Review. 13. Morris MS, et al. J Nutr. 2010; 140(1):103-10 - Vitamin B-6 intake is inversely related to, and the requirement is affected by, inflammation status. 14. Medical Nutrition International Industry (MNI). Better care hrough better nutrition: value and effects of medical nutrition, a summary of the evidence base, 4th version, 2018, www.medical nutritioninutry.

15. Osland EJ, et al. Clin Nutr. ESPEN. 2022; 52:395-420 - micronutrient deficiencies **WEAK EVIDENCE** 16. Sorensen J, et al. Clin Nutr. 2008; 27(3):340-9 - pts at nutritional risk has significantly higher complication rates, increased mortality and longer LOS as compared to "not at-risk" patients. 17. Schneider SM, et al. Br J Nutr. 2004; 92(1):105-11 - risk of infections.

Our reformulated Core range products support a range of health benefits to tube-fed patients

The reformulated Nutrison Tube Feeds with the new protein blend are well tolerated and non-coagulating^{1,2}

Non-coagulating tube feeds compared to coagulating tube feeds have faster gastric emptying and less stomach retention^{3,4}

Nutrison MF and Nutrison EN MF continue to have a unique multi fibre blend (MF6)

This unique MF6 blend has clinically shown to:

- support gastrointestinal tolerance by reducing diarrhoea, improving gut transit, reducing constipation, and reducing bloating⁵⁻¹²
- support recovery; decreases hospital stay and complications¹³
- Another benefit is "support, recover, decrease nursing minutes attending to bowel issues"

1.Van Eck EB, et al. Food Research International. 2024; 197(1):115162. 2. Van Den Berg C, et al. ESPEN Accepted Abstract, Clin. Nutr. 2024 - Gastrointestinal tolerance and compliance of reformulated tube feeds with a plant-dominant protein blend. 3. Kuyumcu S, et al. J Parenter Enteral Nutr. 2015; 39(5):544-51. 4. Goelen et al. Clin Nutr. 2021; 40(5):2663-72. 5. Jakobsen LH, et al. Clin Nutr. 2017; 36(2):380-88 - diarrhea
6. Yagmurdur H, et al. Asia Pac J Clin Nutr. 2016; 25(4):740-6 - diarrhea. 7. Hofman Z, et al. Clin Nutr. 2001; 20(3):63-4 - less laxatives (paeds pts). 8. Wierdsman NJ, et al. Net Tijdschr Voeding Diet. 2001; 56(11):243-7 - diarrhea
9. Sillk DBA, et al. Clin Nutr. 2001; 20(1):49-58 - gut transit. 10. Trier E, et al. J Pediatr Gastroenterol Nutr. 1999; 27:595 - constipation. 11. Green CJ. Clin Nutr. 2001; 20(1):23-39. 12. Guimber D, et al. Br J Nutr. 2010; 104:1514-22
13. Karakan T, et al. World J Gastroenterol. 2007; 13(9): 2722-27